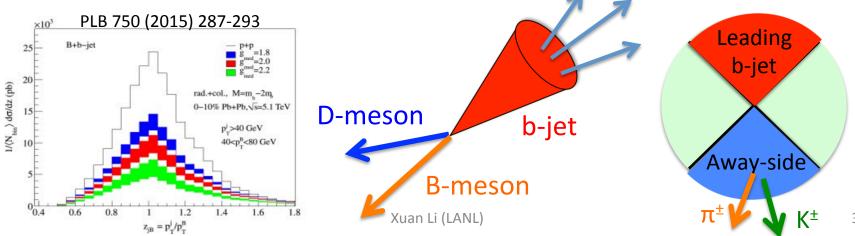
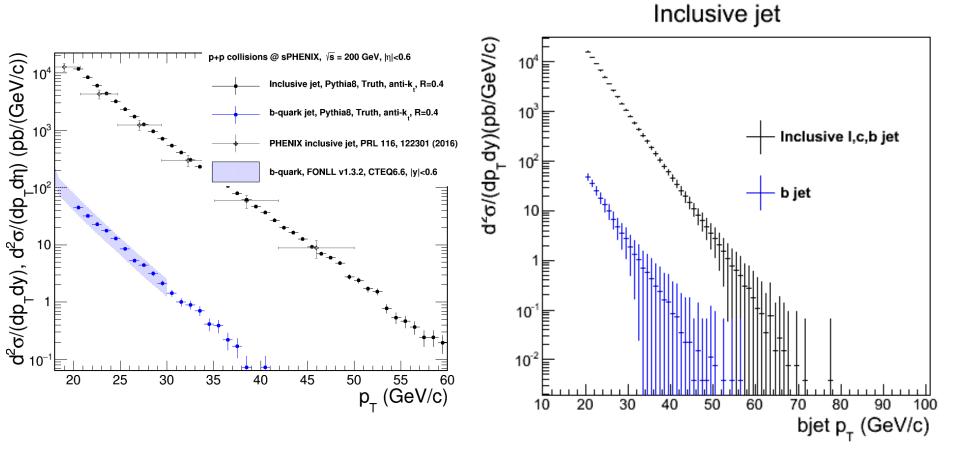
b-jet and non-prompt D-meson correlation in hard QCD events

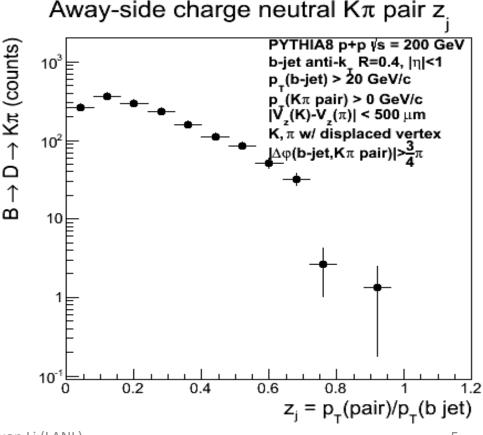

Xuan Li (LANL)

Motivation

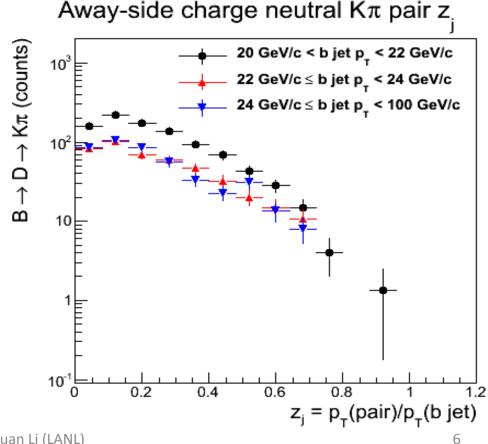
- Through the b-jet and B hadron correlations with B hadron within the leading b-jet jet cone and B hadron within the away-side b-jet jet cone,
 - understand the b->B hadron fragmentation process when comparing to di b-jet correlations (https:// indico.bnl.gov/conferenceDisplay.py?confld=2678).
 - Extend the z_j scale to lower p_T region but the cost is the branching ratio and decay smearing of b->B->D⁰.
 - help understand the b quark energy loss in Au+Au collisions.
- Use non-prompt D⁰ to tag B hadron.
- The D meson reconstruction studies allows the search of prompt D meson tagging jets, which will provide the information about c-jets and help understand the mass/flavor dependent parton energy loss.


PYTHIA8 simulation

- Run 18M PYTHIA8 Hard QCD simulation events.
- Only look at events contain leading jets with $p_T > 20 \text{GeV/c}$ and within $|\eta| < 1.0$.
- Check the away-side B-meson and D-meson z_i.
- Look at all away-side kaons and pions with $p_T > 0.3$ GeV/c and displaced vertex.
- For kaons and pions, form pairs between them with opposite charge sign and only when the differences between their z decay vertex is less than 500 µm.


Cross-check with the b-jet cross section in MVTX pre-proposal

 My PYTHIA MB inclusive jet cross section (right) is comparable with the MVTX pre-proposal figure 5 (left).


p+p b-jet and non-prompt D⁰ projection

- Assume b-jet tagging efficiency is 0.5 and its purity is 1. The purity needs further studies.
- Assume non-prompt D⁰ efficiency is 0.6.
- For p+p, assume the integrated luminosity is 175 pb⁻¹, and this number could be doubled for more than 4 year data taking periods.
- Background is not evaluated and needs further studies.

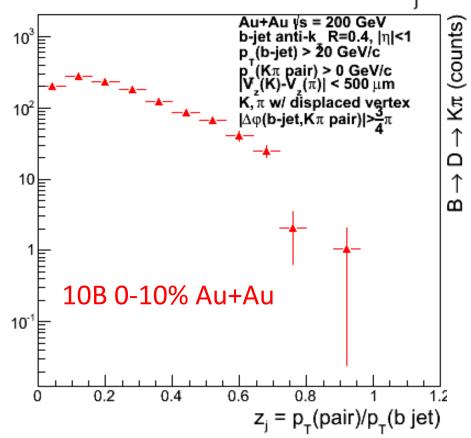
p+p b-jet and non-prompt D⁰ projection

- Assume b-jet tagging efficiency is 0.5 and its purity is 1. The purity needs further studies.
- Assume non-prompt D⁰ efficiency is 0.6.
- For p+p, assume the integrated luminosity is 175 pb⁻¹, and this number could be doubled for more than 4 year data taking periods.
- Background is not evaluated and needs further studies.

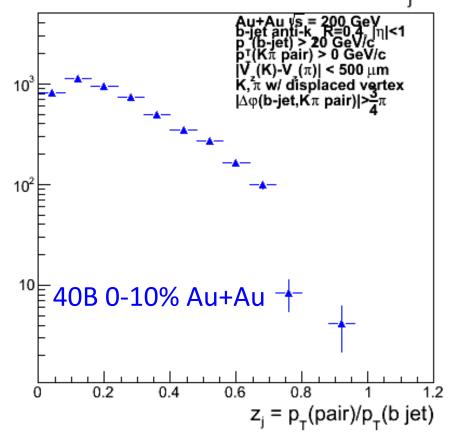
Au+Au Luminosity Projections

- Assume b-jet tagging efficiency is 0.5 and its purity is 1.
- Assume non-prompt D⁰ efficiency is 0.6.
- Assume b-jet and non-prompt D⁰ R_{AUAU}=0.6.
- For 10B 0-10% Au+Au collisions, the estimated integrated luminosity is:

$$L = N_{eve} \times N_{coll} / \sigma_{pp} = 10B \times 962 / 42mb = 229 pb^{-1}$$


• For 40B 0-10% Au+Au collisions, the estimated integrated luminosity is 916 pb⁻¹.

Au+Au b-jet and non-prompt D⁰ Projections


Projection in 10B (left) and 40B(right) 0-10% Au
+Au events.

Away-side charge neutral Kπ pair z

→ Kπ (counts)

Away-side charge neutral $K\pi$ pair z_i

Conclusions

- It is feasible to do the b-jet and non-prompt D⁰ correlations at sPHENIX with TPC+INTT+MVTX tracking.
- Need to apply a more realistic R_{AA} projection for b-jet and non-prompt D⁰ correlations which could be provided by theory calculations.
- Need to study possible cuts to enhance the signal to background ratio such as the pair DCA cuts.
- Need to think about online D⁰ trigger development for both inclusive D⁰ and correlation studies.
- Could apply similar method to tag prompt D⁰ for the c-jet study.